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Abstract

We consider robust network design problems where the set of feasible demands may be
given by an arbitrary polytope or convex body more generally. This model, introduced by Ben-
Ameur and Kerivin [2], generalizes the well studied virtual private network (VPN) problem.
Most research in this area has focused on finding constant factor approximations for specific
polytope of demands, such as the class of hose matrices used in the definition of VPN. As
pointed out in [4], however, the general problem was only known to be APX-hard (based on a
reduction from the Steiner tree problem). We show that the general robust design is hard to
approximate to within logarithmic factors. We establish this by showing a general reduction of
buy-at-bulk network design to the robust network design problem.

In the second part of the paper, we introduce a natural generalization of the VPN problem. In
this model, the set of feasible demands is determined by a tree with edge capacities; a demand
matrix is feasible if it can be routed on the tree. We give a constant factor approximation
algorithm for this problem that achieves factor 8 in general, and 2 for the case where the tree
has unit capacities.

1 Introduction

Robust network design considers the problem of designing a network, by buying bandwidth on some
underlying undirected graph G = (V,E), in order to support some set of valid demands (demands
are specified by matrices Dij). We are primarily concerned with minimizing the cost of the network
which is determined by

∑
e∈E c(e)x(e) where x(e) is the bandwidth assigned to edge e, and c(e) is a

per-unit cost. The set of valid demands consists of some convex body, usually a polytope, which we
denote by U (for universe). In addition, we require that the U is separable, i.e., there is a polytime
algorithm to solve its separation problem. We mention that design criteria besides total cost are
also possible. For instance, designing the network to have minimum maximum edge congestion,
has been the focus of intense study dating back to classical work on parallel computation (e.g. [19])
and reaching to the recent breakthrough of Räcke [17]. In the following, we use the term robust
network design problem to refer to the cost version.

Since our network must potentially satisfy multiple demand matrices, we must also define how
routings are allowed to change if demands change. We can obviously achieve the cheapest network if
routings are allowed to be fractional and may be recomputed for each new demand matrix; call this
the dynamic robust network design problem. However, this is not practical in a data network setting
for instance. Instead we restrict attention to the oblivious routing model, where each pair i, j ∈ V
must fix a path Pij ahead of time; this specifies what we call the flow template). Subsequently, if
we must support a matrix D, then for each i, j we send Dij units of flow along each Pij . For such a
template, the capacity required on edge e, is then the maximum load put on e by one of the valid
matrices in U . Hence the optimization problem is to find a template for which the sum of these
maximum loads is minimized.

While research on robust network design has focused on special classes of demand universes
[7, 12, 13] and on establishing constant time approximation guarantees for these classes (some of
which we describe below), as pointed out in [4] the approximability status for robust design with
general polytopes has not been resolved. Our first result shows that it is hard to approximate the
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optimal solution to within a logarithmic factor. This follows from a reasonably broad connection
to buy-at-bulk network design described in Section 2. Previously, robust design was known to
be APX-hard, but our hardness result is tight to within polylog factors since an Õ(log n) factor
approximation is known based on metric tree embeddings ([11] and cf. [4, 9]). Our second main
result gives a constant factor approximation for a generalization of a well-studied class of demands:
the hose matrices. We discuss this further now.

Positive results in robust network design have been given for relatively few demand matrix
universes. One universe of central interest [7, 12, 5, 6] is the class of hose matrices, H = {Dij :∑

j Dij ≤ b(i), ∀ i ∈ V }. Here, b(i) is called the marginal for node i; in other words, it gives an
upper bound on the amount of traffic allowed to terminate at this node. The demands are viewed
as undirected: it is assumed Dij = Dji and this represents a single demand between i, j. The
virtual private network (VPN) problem is the minimum cost robust network design problem for
the class H.

The VPN problem was shown to have a 2-approximation algorithm independently in [7, 12].
The algorithm works as follows. Consider taking each node w ∈ V as a potential hub node. Then
for each other node v, route b(v) units of flow to w on a shortest path tree T centered at w; pick the
cheapest of such solutions. It is clear that the resulting capacitated tree (call it the VPN tree) is a
feasible solution. It was conjectured [15] that the optimal solution was in fact such a tree (the VPN
problem would then be polytime solvable). This was resolved positively in [8], building on work
in [10] (the conjecture had earlier been proved for ring networks and some other special cases [14]).

Our second result is a constant factor approximation algorithm for a new class of demand
matrices called tree demands which generalizes the class of hose matrices. For an edge-capacitated
tree T with leaf set W ⊆ V , we denote by HT the set of matrices Dij for which the demands can
be routed in T . That is, routing Dij units between i, j in T for each i < j, should not overload
the capacity, denoted by be, of any edge e ∈ T . Note that if we take T to be a star with center
node v, and the capacity of each edge iv to be b(i), then the set of tree demands is just the class
of hose matrices. This has another interpretation in terms of cuts. Any demand matrix D can be
alternatively specified by a weighted complete graph on the terminals, with edge uv having weight
Duv; we call this the demand graph. The VPN model can be interpreted as imposing singleton cut
constraints on this graph: we must be able to route all demands such that for any u ∈ W , the
weight of the cut δ({u}) in the demand graph does not exceed its marginal b(u). It is natural to
study universes defined by more general cut families; each cut in a given family has a maximum
capacity and a demand is valid, as long as it does not violate any of these cut constraints. Tree
demands correspond exactly to the case where the cuts form a nested family. These extra cut
constraints could be used to more accurately define the requirements of a network, such as a VPN,
possibly yielding a cheaper final network.

In Section 3 we describe an algorithm which computes a routing template that induces a network
whose cost is at most 8 times the optimal robust design for HT ; this is improved to a tight factor 2
for the unit capacity case. In fact, the proofs imply something stronger: given the optimal network
that supports each tree demand via dynamic fractional routing, we can find an oblivious routing
which costs no more than 8 times as much (or twice in the unit capacity case).

Other related work. In the asymmetric hose model (which can be shown to strictly generalize
the symmetric model via a simple transformation), terminals are divided into senders and receivers.
In addition to hose constraints as in the symmetric version, all demand goes between senders and
a receivers, i.e. Dij = 0 if i and j are both senders or both receivers. This problem (unlike the
symmetric version) is NP-hard; a randomized constant-approximation algorithm for the robust
design problem for the class of asymmetric hose matrices is given in [13]. Note that while the
asymmetric hose model generalizes the symmetric one, it is not comparable to the class of tree
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demands considered in this paper.
The original use of hose matrices was primarily motivated by an application in data networks.

An operator wants to build a subnetwork for a customer with sites at several nodes i, each which
may offer up to b(i) units of capacity. In [18], an application to optical networking is described.
They first remark that the capacitated VPN tree described above, has enough edge capacity to
route all the hose matrices with an oblivious routing template that is more wasteful than the tree
template. The hub template defines the path Pij as the union of i’s path to the root (or hub) w with
j’s path to w. (The path may be nonsimple.) The motivation for a hub template is that one may
now set up cost-efficient optical fixed paths from each terminal to the hub w, avoiding expensive
routing equipment. Typically several hubs are chosen to avoid a single point of failure. Intuitively,
the best choice of hub(s) consists of nodes in the center of a network, but this requires that all
traffic, local or not, must route to a centralized region. In [18] it is left open to compare the costs
of routing architectures based on some form of “hierarchical hubbing”. One possible algorithm
needed for such a comparison is a simple extension of the hierarchical hubbing subroutine used in
the present paper (see Section 3.2).

1.1 Model and definitions

A general instance of polyhedral (or convex body) robust network design consists of an undirected
graph G = (V,E) where each edge e ∈ E has an associated nonnegative cost ce. This represents
the per-unit cost of bandwidth reserved on that edge. In the remainder, we use dG(u, v) (or just
d(u, v)) to denote the length of a shortest path between u and v using the cost vector c.

Throughout we may assume that our demand matrices Dij ∈ U are symmetric and in fact
Dij = Dji represents a single undirected demand between i, j. (Alternatively, one could simply
work with lower triangular D.) As described above for the hose model, we generally assume that
for each node v there is a marginal b(v) ≥ 0 which is always an upper bound on the total demand
which may terminal at v. We may refer to nodes with b(v) > 0 as terminals, and denote the set of
terminals by W .

2 An equivalence between robust and buy-at-bulk network design

In this section, we show that a large class of uniform buy-at-bulk network design problems can be
simulated by a robust network design problem over a separable polytope of demand matrices. This
will imply that it is hard to approximate the robust network design problem for a general polytope
P within a factor of Ω(log1/4−ε n) for any ε > 0, assuming that NP 6⊂ ZPTIME(npolylog n). We are
given an undirected graph G with nonnegative edge lengths ce, as well as a single nonnegative, in-
creasing and concave price function f , with f(0) = 0. A number of demand pairs s1t1, s2t2, . . . , sktk
are also given. A solution must reserve enough capacity on each edge so that all the demand pairs
may route simultaneously along selected paths Pi between si, ti. The cost of an edge e in the solu-
tion, however, is given by cef(xe), where xe is the number of Pi’s containing e. Since f is concave,
buying a large capacity on a single edge may be much cheaper than buying small capacities on
many edges.

Andrews [1] showed that even on undirected graphs, this uniform buy-at-bulk problem is hard
to approximate; in particular, it cannot be approximated within a ratio of Ω(log1/4−ε n) for any
ε > 0, unless NP ⊂ ZPTIME(npolylog n).

We begin with an instance of uniform buy-at-bulk. From this, we construct an instance of robust
network design with a polytope that can be described very simply, and separated in polynomial
time.
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Let Π be the set of permutation of the integers 1 through k, and let π be any such permutation.
For notational convenience, we also define π(0) = 0. Define the demand matrix Dπ by

Dπ
uv =

{
f(π(i))− f(π(i)− 1) if {u, v} = {si, ti} for some 1 ≤ i ≤ k

0 otherwise
. (1)

Now define the polytope P as
P := conv{Dπ : π ∈ Π}. (2)

Theorem 2.1. The buy-at-bulk problem on graph G with lengths ce and cost function f(·), has the
same optimum as the robust optimization problem on the same instance where P is used for the
demand polytope. In addition, the optimal routings are the same.

Proof. Consider an arbitrary solution template given by siti paths Pi for each 1 ≤ i ≤ k. Let `e be
the number of demand pairs which use edge e on their path. Then for any edge e, the cost of this
edge in the buy-at-bulk instance is cef(`e). In the robust instance, the required capacity ue is

ue := max
D∈P

∑
i:e∈Pi

Dsiti

= max
π∈Π

k∑
i=1

1e∈Pi(f(π(i))− f(π(i)− 1)),

Since the maximum occurs at a vertex of the polytope. But since f is concave, the differences
f(j)− f(j − 1) decrease as j increases. So we have that

k∑
i=1

1e∈Pi(f(π(i))− f(π(i)− 1)) ≤
`e∑

i=1

f(i)− f(i− 1) = f(`e).

In fact we have equality, from any permutation π that maps {i : e ∈ Pi} to {1, 2, . . . , `e}. Thus
the amount paid for the reservation of edge e is ceue = cef(`e), exactly the cost in the buy-at-bulk
instance.

It remains to show that this choice of P can be separated:

Claim 1. The polytope P defined in (2) is separable in polynomial time.

Proof. Let D be an arbitrary demand matrix. If Duv 6= 0 for some pair u, v that is not a source-sink
pair si, ti, then D is clearly not in P. Otherwise, let the vector d be defined by di = Dsiti ; this
contains all the information in D. Similarly, define dπ = Dπ

siti . The matrix D is in P if and only
if D =

∑
π∈Π wπDπ, for some nonnegative weights wπ that sum to 1. Equivalently we require

d =
∑
π∈Π

wπdπ.

But dπ = P πd1, where P π is the permutation matrix associated with π, and d1 is the demand vector
associated with the identity permutation. Hence D ∈ P if and only if d is a convex combination of
elements in {P πd1 : π ∈ Π}. This is equivalent to saying that

d = Md1

for some doubly stochastic matrix M . This can easily be written as a linear program as follows.
Consider a complete bipartite graph with bipartition X ∪ Y where nodes in X and Y correspond
to the terminal pairs siti. Each i ∈ X has an associated value di, and on Y this node has a value
d1

i . Finding M is equivalent to finding a fractional perfect matching (xij : i ∈ X, j ∈ Y ) in this
graph such that for each i,

∑
j xijd1

j = di. So P is indeed separable.
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3 Tree demands

3.1 The demand model

As the general robust network design problem is hard to approximate to within logarithmic factors,
it is interesting to examine the universes of demand matrices for which which constant approxima-
tions are possible. The most prominent examples to date consisted of the universe of hose matrices
(exactly solvable), and more generally the class of asymmetric hose matrices (5.55-approximable)
described in the introduction [13]. In this section, we describe an 8-approximation for the class of
tree-demand matrices. This class includes the hose matrices but is noncomparable to the class of
asymmetric hose matrices. Throughout we use opt denote the cost of an optimal solution for an
instance of this problem.

Let T be a tree whose leaves are indexed by the terminals W . We sometimes abuse notation
and do not distinguish between the leaves of T and the terminals W . Each edge e of T has an
associated capacity be.

Definition 1. A demand matrix Dij whose rows and columns are indexed by W is called a T -
demand if it can be routed on T without violating the capacities on the edges of T . The set of
T -demands defines a polytope that we denote by HT .

The tree demand problem (for a given T ) is defined as the robust network design problem
induced by G and the universe HT . Thus, we seek an oblivious routing for the terminals which
minimizes the total capacity cost required to support all T -demands. Notice that the special case
where T is a star is precisely a VPN instance, with the marginal on terminal v given by the capacity
of the edge in the star between v and the root.

In this section, we provide an approximation algorithm for the tree demand problem. It achieves
an approximation ratio of 2 if the edges of T have unit capacity, and a ratio of 8 for arbitrary
capacities. We do not show that these bounds are tight however; it is possible that the algorithm
described is in fact optimal. This is the case if the tree is a star by the VPN Theorem [8].

An integral part of the algorithm is a facility-location type subroutine which places hubs in the
network so that subsets of terminals have low-cost routings to their local hubs. We describe this
problem next.

3.2 A hierarchical hubbing algorithm

In this section, we describe an exact algorithm for the following hierarchical hubbing problem which
is very similar to the zero-extension problem [16, 3] on a tree. Given our capacitated tree T ,
find a mapping h : V (T ) → V (G) such that h(v) = v for each leaf v and subject to this, we
wish to minimize

∑
e=uv∈T bedG(h(u), h(v)). A solution to this problem also defines an oblivious

hierarchical routing template where Puv (possibly nonsimple) is defined as the union of the shortest
paths between nodes h(z), h(w) over all edges e = zw on the unique u-v path in T .

Recall that in the zero-extension problem we are given a set of terminals W within a weighted
graph (T in our case) and a metric on W . We wish to assign all nodes of T to terminals so as to
minimize the sum over all edges of T , the product of the edges weight, and the distance between
the terminals to which its endpoints are assigned. If W = V (G), then the hubbing problem is just
zero-extension on the tree T using the metric from G.

The hubbing problem is also a natural extension of the algorithm for the VPN problem. In the
case where T is a star the mapping yields a tree in G. In fact, it yields the cheapest shortest path
tree, where each terminal routes to a hub node r along a shortest path.

Given a mapping for the hubbing problem, we obtain a natural oblivious routing template.
For any pair i, j ∈ W , look at the path in T between the leaf nodes i and j. This path i =
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x1, x2, . . . , xt = j can now be mapped into a (not necessarily simple) path between i and j in G,
by mapping the edges x1x2, x2x3, . . . , xt−1xt via h to paths from i to j via x2, x3, . . . , xt−1. This
motivates the name “hierarchical hubbing”.

Lemma 3.1. An optimal hierarchical hubbing solution can be found in polynomial time.

Proof. It is clear that the solution should map an edge uv ∈ T to a shortest path between h(u) and
h(v). So the optimal hierarchical hub routing is determined by the map h on the vertices of T , i.e.,
by the positions of the hierarchical hubs. For any subtree S of T , and any node v ∈ V , let C(S, v)
be the cost of an optimal hierarchical hubbing solution for S, but with the root of S mapped to
node v. For S = {i} a leaf of T , define C({i}, i) = 0 and C({i}, v) = ∞ if v 6= i, i.e., mapping i to
v is not valid.

We calculate these costs using dynamic programming. Let s be a node of T , and S the subtree
rooted at s. Label the children of s as s1, s2, . . . , sk, and let Si be the subtree rooted at si. Let ei

denote the edge from s to si. Suppose we know C(Si, w) for 1 ≤ i ≤ k and all nodes w ∈ V . We wish
to calculate C(S, v) for some v ∈ V . But the optimal location of the hub represented by si is clearly
the vertex wi that minimizes C(Si, wi) + beid(v, wi). Then C(S, v) =

∑k
i=1 C(Si, wi) + beid(v, wi).

This clearly yields a polynomial algorithm via dynamic programming.

We mention two extensions of the problem, hub-constrained and leaf-constrained hierarchical
hubbing, which relate to the optical design problem discussed in the introduction. In the hub-
constrained version, each edge uv of T has an associated bound U(u, v) which gives the maximum
allowed distance between h(u) and h(v). In the leaf-constrained version, we think of T as being
rooted at some node r, and for each leaf u and node v on the path from u to r, we require that
d(h(u), h(v)) ≤ U(u, v). The algorithm described above can be easily modified to find the optimal
solution subject to these extra constraints.

3.3 Overview of the analysis

In the next section, we define a class of demand matrices D` with the following properties. Each
D` is associated with a so-called connected labelling of T , which in turn has an associated oblivious
template P`. Moreover, if G has enough capacity to route a given D`, then it also has enough
capacity to support all demands in HT via the template P`. Unfortunately, it is not the case that
every D` ∈ HT . Instead, we define a distribution over this class of matrices such that D̄ := E(D`)
lies in αHT for some constant α. We show that it is actually enough to route D̄ in G. It follows
that for some `, the cost of routing D` is within a constant factor of the optimal robust network.
Finding such a D` may be hard in general; instead, we show that the cost of routing any D` is
at least the cost of an optimal hierarchical hub routing, which we can find in polynomial time.
Since the hierarchical hub routing is a feasible solution to the tree demand problem, this gives an
α approximation; we will demonstrate a distribution that yields α = 8.

3.4 Connected labellings and hub routings

Definition 2. A connected labelling of a tree T is a function ` : V (T ) → W satisfying the properties
that `(w) = w for all w ∈ W , and `−1(w) connected for all w ∈ W .

A connected labelling ` induces a demand matrix D` in a very natural way. Simply contract
each set `−1(w) to obtain a new tree T `, with V (T `) = W (see Figure 1). The edges of T ` determine
the nonzero demands—if uv /∈ T `, then D`

uv = 0. Now consider uv ∈ T `. There is a unique edge
e ∈ T that connects the components `−1(u) and `−1(v). Define D`

uv = be.
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The optimal solution to route just the single demand matrix D` simply consists of routing
on shortest paths. This has a cost of C∗(D`) =

∑
u,v∈W D`

uvd(u, v). This has an alternative
interpretation that connects to hierarchical hubbing. Recall that the hierarchical hubbing algorithm
found a mapping h : V (T ) → V (G), taking leaves to respective terminals, and minimizing the cost∑

uv∈E(T ) buvd(h(u), h(v)). This means that the optimal solution for the single matrix D` is exactly
a hierarchical hubbing solution where we enforce h(u) = `(u) for each node u ∈ V (T ). It follows
that:

Lemma 3.2. For any connected labelling `, the hierarchical hubbing solution for T costs no more
than the optimal routing for D`.

Let Q be any routing of D` (although we could assume a shortest path routing) and let u be
the edge capacity (i.e. induced edge load) vector associated with this static routing. We define a
routing template as follows. For any given pair u, v of terminals, consider the path between u and
v in T `; let it be v0v1 · · · vm, where v0 = u and vm = v. Then for each edge vivi+1 of this path,
there is an associated route Qvivi+1 in Q. We define Puv to be a simple u-v path contained in the
union Qvv1 ∪Qv1v2 ∪ · · · ∪Qvm−1v, and take P` to be the routing template given by the Puv’s.

Lemma 3.3. The capacities u are enough to support the routing of any D ∈ HT via P`.

Proof. Let D be any T -demand, and let f be any edge of G. Let E′ be the set of edges e = zw in
T `, such that Qe contains f . Note that since T ` was obtained from T by contracting edges, we can
think of e as an edge in T also. A pair u, v uses path Qe as part of their routing Puv if e separates
v and w in T . Let S(e) denote the set of such terminal pairs. Then the total load induced on edge
f by demand D via P` is at most

∑
e∈E′

∑
uv∈S(e) Duv ≤

∑
e∈E′ be. The last inequality follows by

definition of a tree demand: the total demand from D across any edge e ∈ T cannot exceed be.
Since D`

zw = bzw for each edge in zw ∈ T `, the total load does not exceed
∑

zw∈E′ D`
zw ≤ uf as

required.

3.5 Distributions over connected labellings

For any connected labelling `, D` induces a load on edges in the original T . For edge e = uv ∈ T ,
this is

∑
uv∈S(e) D`

uv, where recall S(e) is the set of terminal pairs separated by e in T . If e ∈ T `,
the only pair in S(e) with nonzero demand in D` is between `−1(u) and `−1(v), and this gives a
load of be. For other edges, the load may generally exceed the edge’s capacity be, and so D` may
not be a valid T -demand. But suppose we manage to find a distribution so that the expected load
across on any edge of T exceeds its capacity only by a constant factor α. Then consider the demand
matrix D̄ obtained by averaging the demand matrices D` over this distribution, i.e. the demand
matrix given by D̄ij = E(D`

ij). The demand D̄/α does not exceed any edge capacity, and so is a
feasible T -demand. Thus the cost to optimally route the single matrix D̄/α (which we denote by
C∗(D̄/α)) is a lower bound on the cost of opt, i.e. C∗(D̄) ≤ α · opt. Since static routings are on
shortest paths, we have a simple formula for C∗(D̄):

Claim 2. C∗(D̄) = E(C∗(D`)).

Proof. We know that the optimal solution to route the fixed demand matrix D consists of adding
together shortest paths between each pair, weighted by the appropriate entry of the demand matrix.

C∗(D̄) =
∑

u,v∈W

D̄uvd(u, v). (3)
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The same is true for any of the D`’s:

C∗(D`) =
∑

u,v∈W

D`
uvd(u, v).

Taking expectations of both sides, and then using (3), we have

E(C∗(D`)) =
∑

u,v∈W

E(D`
uv)d(u, v) =

∑
u,v∈W

D̄uvd(u, v) = C∗(D̄).

It follows from this claim that there must be some ` s.t. C∗(D`) ≤ C∗(D). By Lemma 3.2, the
cost of a solution to the hierarchical hubbing algorithm is at most the cost of routing any fixed D`.
Since any hierarchical hubbing solution yields an oblivious template whose cost to support demands
in HT is the same as the hierarchical hubbing cost, we would thus obtain a factor α approximation
for the tree demand problem.

3.6 Expected loads for a distribution

We will now define a distribution over connected labellings of T with the desired properties. We
must first consider the loads induced by a fixed D`.

Consider an arbitrary edge e = uv ∈ E(T ). Let Le and Re be the leaf sets of the two components
of T \ {e}, with u in the same component as Le and v in the same component as Re. It is useful
for us to give an orientation to the edges. Orient e from u to v, and orient all other edges to be
consistent with this. In other words, for each edge f in the component Le, orient f to point towards
e, and for f in Re, orient away from e. Call the arcs in this orientation Ae(T ).

First, we need to calculate the load for a fixed connected labelling `. Consider the contracted
tree T ` defined earlier, which in turn defines D`. Edges in T ` correspond to nonzero demands
between the terminals of the labels of the endpoints. Every edge f in T ` which has one endpoint x
labelled with a terminal in Le and the other endpoint y labelled by a terminal in Re, contributes
to the load of e. These are the only demands in D` that do. The contribution of f is exactly the
capacity of the unique edge between the components `−1(x) and `−1(y) in T .

So the total contribution is∑
f∈E(T )

bf · 1(one endpoint of f has label in Le, the other in Re)

=
∑

(x,y)∈Ae(T )

bxy · 1`(x)∈Le∧`(y)∈Re
. (4)

Now consider any distribution over the labellings. We’re interested in the average, i.e. expected,
load on edges of T . By linearity of expectations, this is∑

(x,y)∈Ae(T )

bxyP(`(x) ∈ Le ∧ `(y) ∈ Re)

=
∑

(x,y)∈Ae(T )

bxy(P(`(y) ∈ Re)−P(`(x) ∈ Re)). (5)

This follows since there are only three possible events for the pair x, y: (i) `(x), `(y) ∈ Le (ii)
`(x) ∈ Le, `(y) ∈ Re or (iii) `(x), `(y) ∈ Re (see Figure 2).
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We now describe a particular distribution of connected labellings. We show that in the case
where be = 1 for all e ∈ E(T ), this produces an expected load of 2, and hence the hierarchical
hubbing algorithm is a 2-approximation. For general capacities, this distribution does not yield a
constant expected load; however, it is the starting point for constructing a distribution that does.

Define the random labelling ` using a coupled random walk scheme as follows. First, pick an
arbitrary non-leaf node of T to be the root; call it r. For every non-leaf node s, pick one of its
children uniformly at random and draw an arrow to it from s. Now for any node s of T , define `(s)
to be the terminal reached by following the arrows from s. This clearly gives a (random) connected
labelling.

Fix an edge e ∈ E(T ). We must compute the expected load on e, as given in Equation (5). Let
us choose to orient e away from the root, so that Re is the component of T \ {e} below e, i.e. not
containing the root. It is clear that any edges below e do not contribute to the sum, since walks
from x and y definitely end up in Re (the walks can’t go up the tree). Likewise, any edge that is
not on, or touching, the path from e to the root cannot contribute—x and y would both have to
end up in Le.

Now label the nodes on the path from e to the root by x0 = y, x1 = x, . . . , xt = r. Let Bi be the
sum of the capacities of the downward edges from xi, and write bi := bxixi−1 (see again Figure 2).

There are two types of edges to consider:

• An edge of the form xixi−1 contributes

bi(P(`(xi−1) ∈ Re)−P(`(xi) ∈ Re))
= bi(Bi/bi ·P(`(xi) ∈ Re)−P(`(xi) ∈ Re))
= (Bi − bi)P(`(xi) ∈ Re)

• An edge of the form g = zxi, where z is a child of xi, not equal to xi−1. g contributes

bg(P(`(xi) ∈ Re)−P(`(z) ∈ Re)) = bgP(`(xi) ∈ Re)

since `(z) ∈ Le. If we sum the contributions of all the edges (other than xixi−1) hanging from
xi, we thus obtain

(Bi − bi)P(`(xi) ∈ Re).

Summing the contributions of all these edges, we find that the expected load on edge e is exactly
t∑

i=1

2(Bi − bi)P(`(xi) ∈ Re) = 2
t∑

i=1

(Bi − bi)
i∏

j=1

bj

Bj
(6)

3.7 Trees with unit capacities

If be = 1 for all e ∈ E(T ), then we have from Eq. (6) that the expected load on any edge is at most

2
t∑

i=1

(Bi − 1)
i∏

j=1

1/Bj

= 2
t∑

i=1

i−1∏
j=1

1/Bj − 2
t∑

i=1

i∏
j=1

1/Bj

= 2− 2
t∏

j=1

1/Bj ≤ 2.

So D̄/2 ∈ HT , as claimed.
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3.8 Trees with arbitrary capacities

The same distribution does not work for arbitrary capacities. A complete binary tree of height h,
with all edges at height i having capacity 2i + 1, can easily be shown to have an expected load of
O(log h) on a leaf edge.

Instead we proceed as follows. Consider any edge e = xy in T with x higher in T (with respect
to the root) than y. If

be ≥
∑

e′∈δT (y)\{e}

be′ , (7)

then HT is not changed even if we work with the tree T ′ obtained by contracting e. Thus we may
assume that no such edges exist at the outset. We look at an approximate form of this inequality
to eliminate problematic edges in T . Call an edge e ∈ T as above such that be ≥ 1

2

∑
e′∈δT (y)\{e} be′

wide. Find a lowest level wide edge and contract it. Note that since (7) does not occur for any
such edge, we have that this contraction will not create any new wide edges. Repeat this process
until we have a new tree T̂ , with associated demand polytope HT̂ . Since we only contracted wide
edges of T , one easily checks that for any D ∈ HT̂ , D/2 ∈ HT . Thus the optimal solution to route
all T̂ -demands costs at most twice the optimal solution routing all T -demands.

We now return to the analysis for the expected load with the additional assumption that there
are no wide edges. In this case, we have bi ≤ Bi−1/2 for all i ≥ 2 and so

i∏
j=1

bj

Bj
≤ b1

B1

B1/2
B2

B2/2
B3

· · · Bi−1/2
Bi

=
b1

2i−1Bi

Thus the total expected load on edge e is

2
t∑

i=1

(Bi − bi)2−(i−1) b1

Bi
≤ 4b1 = 4be

and so the congestion of e is at most a factor of 4. Thus we achieve a factor of 4 with respect to
the optimal routing for HT̂ , giving a factor 8 approximation to the T -demand problem.

It may be possible to improve the approximation factor by a better choice of distribution.
However, it will not be possible to improve the factor to the 2 obtained in the uncapacitated case
with this method, since one can construct examples where for every connected labelling `, the cost
of routing D` is essentially 4 times the cost of the optimum.

4 Conclusion

We have described an algorithm which guarantees a robust network design for the class of tree
demands which is within a factor 8 of the optimal (in fact within a factor 8 of the optimal dynamic
solution). But it may even be the case that the algorithm always gives an optimal solution—we are
not aware of any counterexamples. By the VPN result [8], this is true in the case that T is a star.

There are many directions to explore in terms of even more general demand constraints. For
example, one might consider arbitrary (not nested) cut constraints on the demand graph. Another
possibility is to consider the polytope of demands that are (fractionally) routable on some given
capacitated graph H; we are then asking to design a network on G’s topology that can support any
traffic pattern which is routable in H.

Acknowledgements: We are grateful to Navin Goyal for many helpful discussions, and to Moses
Charikar who suggested looking at generalizations of the VPN problem involving cut families. We
also thank Chandra Chekuri for very helpful suggestions.
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Figure 1: A connected labelling, and the associated T ` obtained by contracting.
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Figure 2: Calculating the expected load on edge e.
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