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Abstract. A fluid queuing network constitutes one of the simplest mod-
els in which to study flow dynamics over a network. In this model we
have a single source-sink pair and each link has a per-time-unit capac-
ity and a transit time. A dynamic equilibrium (or equilibrium flow over
time) is a flow pattern over time such that no flow particle has incentives
to unilaterally change its path. Although the model has been around for
almost fifty years, only recently results regarding existence and charac-
terization of equilibria have been obtained. In particular the long term
behavior remains poorly understood. Our main result in this paper is to
show that, under a natural (and obviously necessary) condition on the
queuing capacity, a dynamic equilibrium reaches a steady state (after
which queue lengths remain constant) in finite time. Previously, it was
not even known that queue lengths would remain bounded. The proof
is based on the analysis of a rather non-obvious potential function that
turns out to be monotone along the evolution of the equilibrium. Fur-
thermore, we show that the steady state is characterized as an optimal
solution of a certain linear program. When this program has a unique
solution, which occurs generically, the long term behavior is completely
predictable. On the contrary, if the linear program has multiple solutions
the steady state is more difficult to identify as it depends on the whole
temporal evolution of the equilibrium.

1 Introduction

A fluid queuing network is a directed graph G = (V, E) where each arc e € E
consists of a fluid queue with capacity v, > 0 followed by a link with constant
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delay 7. >0 (see Fig.1). A constant inflow rate ug > 0 enters the network at
a fixed source s € V and travels towards a terminal node t € V. A dynamic
equilibrium models the temporal evolution of the flows in the network. Loosely
speaking, it consists of a flow pattern in which every particle travels along a
shortest path, accounting for the fact that travel times depend on the instant at
which a particle enters the network as well as the state of the queues that will
be encountered along its path by the time at which they are reached.

Ve Te

(inflow) — (outflow)

(queue) (link)

Fig. 1. An arc in the fluid queuing network.

Intuitively, if the queues are initially empty, the equilibrium should start by
sending all the flow along shortest paths considering only the free-flow delays 7.
These paths are likely to become overloaded so that queues will grow on some of
its edges and at some point in time new paths will become competitive and will
be incorporated into the equilibrium. These new paths may in turn build queues
so that even longer paths may come into play. Hence one might expect that
the equilibrium proceeds in phases in which the paths used by the equilibrium
remain stable. However, it is unclear if the number of such phases is finite and
whether the equilibrium will eventually reach a steady state in which the queues
and travel times stabilize.

Although dynamic equilibria have been around for almost fifty years (see,
e.g., [2-4,6,7,9-12]), their existence has only been proved recently by Zhu and
Marcotte [13] though in a somewhat different setting, and by Meunier and
Wagner [8] who gave the first existence result for a model that covers the case of
fluid queuing networks. These proofs, however, rely heavily on functional analysis
techniques and provide little intuition on the combinatorial structure of dynamic
equilibria, their characterization, or feasible approaches to compute them. Sub-
stantial progress was recently achieved by Koch and Skutella [5] by introducing
the concept of thin flows with resetting that characterize the time derivatives
of a dynamic equilibrium, and which provide in turn a method to compute an
equilibrium by integration. A slightly refined notion of normalized thin flows
with resetting was considered by Cominetti et al. [1], who proved existence and
uniqueness, and provided a constructive proof for the existence of a dynamic
equilibrium.

In this paper we focus on the long term behavior of dynamic equilibria in
fluid queuing networks. Clearly if the inflow ug is very large compared to the
queuing capacities, the queues will grow without bound, and no steady state
can be expected. More precisely, let §(S) be an st-cut with minimum queuing
capacity v = Zeeé(s) Ve; if there are multiple options, choose S (containing
s) to be setwise minimal. If ug > 7 all the arcs in §(S) will grow unbounded
queues, whereas for ug < , it is natural to expect that the equilibrium should
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eventually reach a steady state, where queue lengths remain constant. This was
not known—in fact, it was not even known that queue lengths remain bounded!

Our main goal in this paper is to show that both these properties do indeed
hold: more precisely, when ug < 7, the dynamic equilibrium reaches a steady
state in finite time. At first glance, these convergence properties might seem
“obvious”, and it might seem surprising that they are at all difficult to prove.
We will present some examples that illustrate why this is not the case. For
instance, it may occur that the flow across the cut 6(S) may temporarily exceed
its capacity by an arbitrarily large factor, forcing the queues to grow very large.
This phenomenon may occur since the inflow ug entering the network at different
points in time may experience different delays and eventually superpose at §(.5)
which gets an inflow larger than wug. In other cases some queues may grow during
a period of time after which they reduce to zero and then grow again later on,
so that no simple monotonicity arguments can be used to study the long term
behavior.

Along the way to our main result, we provide a characterization of the steady
state as an optimal solution of a certain linear programming problem and we dis-
cuss when this problem has a unique solution. Despite the fact that convergence
to a steady state occurs in finite time, it remains as an open question whether
this state is attained after finitely many phases or whether the dynamic equilib-
rium may exhibit Zeno-like oscillations in which queues alternate infinitely often
over a finite time interval. In such a case the computation by integration would
not yield a finite procedure. While this seems very unlikely, we have not been
able to prove that it will never happen.

The paper is structured as follows. Section 2 reviews the model of fluid queu-
ing networks, including the precise definition of dynamic equilibrium and the
main results known so far. Then, in Sect. 3 we discuss the notion of steady state
and provide a characterization in terms of a linear program. Inspired by the
objective function of this linear program, in Sect.4 we introduce a potential
function and we prove that it is a Lyapunov function for the dynamics. This
potential turns out to be piecewise linear in time with finitely many possible
slopes. We then prove that the potential remains bounded so that there is a
finite time at which its slope is zero, and we show that in that case the system
has reached a steady state. Further, we provide an explicit pseudopolynomial
bound on the convergence time. Finally, in Sect.5 we discuss some counterex-
amples that rule out some natural properties that one might expect to hold in
a dynamic equilibrium, and we state some related open questions.

2 Dynamic Equilibria in Fluid Queing Networks

In this section we recall the definition of dynamic equilibria in fluid queuing
networks, and we briefly review the known results on their existence, character-
ization, and computation. The results are stated without proofs for which we
refer to Koch and Skutella [5] and Cominetti et al. [1].
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2.1 The Model

Consider a fluid queuing network G = (V, E) with arc capacities v, and delays
Te. The network dynamics are described in terms of the inflow rates f.F(#) that
enter each arc e € F at time 0, where f.F : [0,00) — [0, 00) is measurable.

Arc Dynamics. If the inflow f () exceeds ve a queue z.(f) will grow at the
entrance of the arc. The queues are assumed to operate at capacity, that is to
say, when z.(0) > 0 the flow is released at rate v, whereas when the queue is
empty the outflow is the minimum between f(#) and the capacity v.. Hence
the queue evolves from its initial state z.(0) =0 according to

o fH0) —ve ifze(0) >0
“(0) = { F50) — v, i 20(8) = 0. S

These dynamics uniquely determine the queue lengths z.(0) as well as the
arc outflows (Fig. 2)

_ _ Ve if z.(6) >0
fPW+%>—{mmijL%}ﬁ24m:o. (2)
15O = | #O) [ fo (0+7)
(inflow) (queue) (link) (outflow)

Fig. 2. Dynamics of an arc in the queuing network.

Flow Conservation. A flow over time is a family (f;).cg of arc inflows such

that flow is conserved at every node v € V\{t}, namely for a.e. § > 0
- up ifv =s
INAUED SERUES M 3)
et (v) € (v) ’

Dynamic Shortest Paths. A particle entering an arc e at time 6 experiences a
queuing delay z.(6)/v. plus a free-flow delay 7, to traverse the arc after leaving
the queue, so that it will exit the arc at time

ze(0)

Ve

T.(6) = 6 + + Te. (4)

Consider a particle entering the source node s at time . If this particle
follows a path p = ejes - - - eg, it will reach the end of the path at time

T,0)=T., 0 0T, 0T, (0). (5)

€k

Denoting P, the set of all sv-paths, the minimal time at which node v can
be reached is
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£,(0) = min T,(0). 6
(6) = min T,(6) (6)

The paths attaining these minima are called dynamic shortest paths. The
arcs in these paths are said to be active at time 6 and we denote them by Ej.
Observe that £, (6) can also be defined through the dynamic Bellman’s equations

l,(0)=146
{ew(a) = min T.(6,(0)) @)
so that e = vw is active iff £,,(0) = T.(£,(9)).

Dynamic Equilibrium. A dynamic equilibrium is a flow pattern that uses
only dynamic shortest paths. More precisely, let ©, = {0 : e € Ej}} be the set of
entrance times 6 at which the arc e is active, and =, = ¢,(6.) the set of local
times £ = £,(0) at which e will be active. A flow over time (fF)ccp is called a
dynamic equilibrium iff for a.e. £ > 0 we have f(£) >0=¢ € =

2.2 Characterization of Dynamic Equilibria

Since the inflows f.F(-) are measurable the same holds for f; (-) and we may
define the cumulative inflows and cumulative outflows as

+ 9)—/09f;<z>dz
=/Oafe_(2)dz

These cumulative flows allow to express the queues as z.(6) = F.F (0)—F. (0+7.).
It turns out that a dynamic equilibrium can be equivalently characterized by the
fact that for each arc e = vw € E we have

Fr(€,(0)) = F7 (w(9)) V0 =0. (8)
In this case, the functions x.(6) £ FF(£,(6)) are static flows with
upf ifv = s
Z ze(0) — Z ze(0) = ¢ —upbifv=t (9)
ecst(v) e€s (v) 0ifv # s,t.

2.3 Derivatives of a Dynamic Equilibrium

The labels ¢,(8) and the static flows z.(f) are nondecreasing functions which
are also absolutely continuous so that they can be reconstructed from their
derivatives by integration.! Moreover, from these functions one can recover the
equilibrium inflows ff(-) using the relation z.(8) = fF(¢,(0))¢,(0). Hence,

! These derivatives exist almost everywhere and are locally integrable.
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finding a dynamic equilibrium reduces essentially to computing the derivatives
£,(0), 2.(6).

Let 6 be a point of differentiability and set £, = ¢/ (0) > 0 and =/, = x.(0) > 0.
From (9) we see that 2’ is a static st-flow of size ug, namely,

ugif v=-=s
Z xl — Z 2, =14 —upif v=t (10)
e€dt (v) e€d— (v) 0if v 75 s,

while using (7), (4), (1) and the differentiation rule for a minimum we get

0o=1
f,= min_p.(t;,z.) 1D
e-vaEe
where
N xl [ve ife € B}
pelly, o) = {max{fg),x’e/ue} ife ¢ Ej (12)

with E} the set of arcs e = vw with positive queue z.(¢,(6)) > 0. In addition to
this, the conditions for dynamic equilibria imply E} C Ej as well as

(Vee€ Ey) z, > 0= 0, = pc(,,x.)
(Ve & Ep) xl, = 0.

These equations fully characterize the derivatives of a dynamic equilibrium.
In fact, for all subsets E* C E’ C E the system (10)—(13) admits at least one
solution (¢',z’) and moreover the ¢ component is unique. These solutions are
called normalized thin flows with resetting (NTFR) and can be used to reconstruct
a dynamic equilibrium by integration, proving the existence of equilibria. We
refer to [1] for the existence and uniqueness of NTFR’s and to [5] for a description
of the integration algorithm and how to find the equilibrium inflows fF(-).

Observe that there are only finitely many options for E* and E’. Since the
corresponding ¢’ is unique, it follows that the functions £,(6) will be uniquely
defined and piecewise linear with finitely many options for the derivatives.
Although the static flows z.(6) are not unique in general, one can still find an
equilibrium in which these functions are also piecewise linear by fixing a specific
7' in the NTFR for each pair E*, E'.

(13)

/
e
!
€

3 Steady States

We say that a dynamic equilibrium attains a steady state if for sufficiently large
times all the queues are frozen to a constant z. () = z;. This is clearly equivalent
to the fact that the arc travel times become constant equal to 7} = 7. 4+ ¢ with
q = 25 /v. the corresponding queuing times.

Lemma 1. A dynamic equilibrium attains a steady state iff there exists some
0* > 0 such that £,(0) =1 for every node v € V and all 6 > 0*.
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Proof. In a steady state we clearly have ¢, (6) = 6 + d, where d is the minimum
travel time from s to v with arc times 7., so that ¢, (6) = 1. Conversely, if all
these derivatives are equal to 1 then ¢,(0) = 6 + d7, for some constant d; and
0 > 0*. Moreover, an arc e = vw with nonempty queue must be active so that
L, (0) = Te(¢,(6)) which yields

20(0 4 A7) = 20(0o(0)) = ve(Cu(0) — £u(0) — 72) = ve(d’, — d — 7.)

w

which shows that all queues eventually become constant. a

Theorem 2. Consider a steady state with queues zZ > 0 and let d;, be the min-
imum travel times with arc times 77 = 7.+ ¢ where ¢& = z¥ /v,. Let (¢, ") with
0/, =1 be a corresponding NTFR and denote by Fo the set of st-flows satisfying
(10). Then x' and (d*,q*) are optimal solutions for the following pair of dual
linear programs:

mm E TeT

eckE
s.t. 2 e F
0<z <v, Ve € E,

max  uody = ) ved. (D)
e€E
s.t. ds =0
d11;§dv+7'e+qe Ve=vw e FE
ge 20 Ve € E.

Proof. Clearly (d*,q*) is feasible for (D). Also (10) gives 2’ € Fy, while (13)
implies that if , > 0 then 1 = p.(1,z.). This implies that = < v, so 2’ is
feasible for (P). If #, > 0 then by (13) the arc e is active, and hence d}, =
df + T + qF. And if ¢& > 0, then (11) implies that 1 < p.(1,2.) = «. /ve, which
yields x, = v.. This proves that 2’ and (d*,¢*) are complementary solutions,
and hence are optimal for (P) and (D) respectively. O

According to this result, if a dynamic equilibrium eventually settles to a
steady state then the corresponding queue lengths must be optimal for (D).
Generically (after perturbing capacities) this linear program has a unique solu-
tion in which case the steady state is fully characterized. Otherwise, if (D) has
multiple solutions it is not evident which queue lengths will be obtained in steady
state. Note that even if the min cost flow for (P) is unique, this does not mean
that only one steady state situation is possible because there may be flexibility in
the queue lengths. For instance, if ug = 1 and the network has a single link from
s to t of unit capacity, if we create a queue of some length at time 0 this queue
will remain in the steady state solution. This point will be further discussed in
Example 3 in Sect. 5.
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Remark. It is not difficult to show that when we start with initial conditions
z¢(0) = z¥ where 2z} = v.q} with ¢* optimal for (D), then the dynamic equilib-
rium is already at a steady state and the queues remain constant.

4 Convergence to a Steady State

In this section we prove that a steady state exists and that it is actually reached
in finite time. To this end we introduce a Lyapunov potential function that
increases along the evolution of the dynamic equilibrium. The potential function
is inspired from the previous dual program and is given by

@(0) = UO(Et(9> - es(e)) - Z Ze(év(a))

e=vwekE

Theorem 3. &'(0) is nonnegative for all 6 and strictly positive unless the
dynamic equilibrium has reached a steady state.

Proof. The queues can be expressed as z.(£,(0)) = ve[lw(0) — £u(0) — 7] -
Using the derivative of a max function and taking a NTFR (¢,2') at time 6,
we thus obtain

O(0) =uo(l; — £)) — > velll, = L]y — > vell, — L)

cC€E\E} c€E}

Now, foreeE(,\E‘9 we have ), < p.(¢,,xL) =€, ifz, =0and £, = p.(£),,x) >

vy e v E

¢, if 2, > 0, so that letting Ef = Ej;U{e € EQ\E; : z, > 0} we may write

O'(0) = uo(ly = 0) = Y ve(l, = 1,).

+
ecE,

Let us introduce a return arc ts with capacity 15 = ugp and flow 2}, = wug so
that 2’ is a circulation. Let Ej = E, U {ts} and for each e = vw € Ej define
the function
1 it <z<t,
H(z)=< -1 ifet, <z<{,

0 otherwise.
Then the derivative ¢’ () can be expressed as

/ S wH

ee by

For the remainder of the proof, let §(S) denote the edges in Ej crossing S
(and similarly for 67(S) and 6= (S)). Let V, = {v : £, < z} and consider an
arc e = vw € E;. If e € §%(V}) then £, < z < ¢!, and therefore £}, = 2/ /v,.
Similarly, if e € 67 (V.) then ¢, < z < ¢, which implies e € Ej and again



Long Term Behavior of Dynamic Equilibria in Fluid Queuing Networks 169

0, =, /v.. Hence 2, = v 0}, for all e € E; N (V). This equality also holds for
the return arc ts, while in the remaining arcs =, = 0. Hence

Zuezg Z vell, = Zw’e: Zw’e: Z vell, < Zl/ez

e€dt (V) e=vwedt (V) e€dt(V,) e€d—(V,) e=vwed (V) ecd—(Vy)

with strict inequality if 8% (V) is nonempty. It follows that for all z > 0 we have

ZyeHe(z): Z Ve — Z ve <0

ecE} ecét (V) ecs—(Vz)

and therefore @'(#) > 0 with strict inequality unless §*(V,) is empty for almost
all z > 0. The latter occurs iff all ¢/ are equal. Since ¢, = 1 it follows that
&' (0) =0 iff £/, =1 for all v which by Lemma 1 characterizes a steady state. O

Theorem 4. Let U = ) V. be the minimal queuing capacity among all st-
cuts C. If ug < v then the dynamic equilibrium attains a steady state in finite
time.

Proof. From Theorem 3 it follows that there is some x > 0 such that &'(0) > &
for every phase other than the steady state. This is simply because the thin flow
depends only on the current shortest path network Ej and the set of queuing
edges Ej, and so there are only finitely many possible derivatives.

Thus, in order to prove that a steady state is reached in finite time it suffices
to show that &(6) remains bounded. To this end we note that the condition
ug < 7 implies that (P) is feasible and hence it has a finite optimal value a.. The
conclusion then follows by noting that the point (d,q) with d, = £,(0) — £5(0)
and ¢e = z.(£,(0))/ve is feasible for the dual (D) so that &(0) < «. O

Given that convergence to a steady state does happen in finite time, it is
natural to ask for explicit bounds. It is easy to see that a polynomial (in the
input size encoding) is impossible; simply consider a network consisting of two
parallel links, one with capacity 1 —2% and length zero, the other with capacity 1
and length 1. The first phase, where all traffic takes the shorter edge, lasts until
time 2. However, we can give a pseudopolynomial bound on the convergence
time (and hence, queue lengths).

Theorem 5. Consider an instance for which ug € Zy and v. € Z4 for all
e € E.Let M = ) cpve and T = ) pT.. Then assuming the dynamic
equilibrium attains a steady state, it is reached by time O(MT), and moreover,
the waiting time in any queue never exceeds O(M3T).

The argument to bound the convergence time involves showing that the dif-
ference between the smallest and largest label derivative is not too small. Com-
bining this with an upper bound on the rate at which any queue can grow yields
the second claim. We delay the proof to the full version of the paper.
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5 Some Conjectures and Counterexamples

While we have settled the finite-time convergence to a steady state, there are a
number of questions about dynamic equilibria that remain open. In this section
we discuss some conjectures and provide counterexamples to some of them.

As mentioned in the introduction a first conjecture would be that, similarly
to what happens for static flows, the flow across any cut is always bounded
by the inflow. This would provide a way to estimate the queues and to prove
their boundedness. Unfortunately the property fails in a dynamic equilibrium.
The reason for this is that flow entering the network at different times may
experience different delays in such a way that they later superpose across an
intermediate cut. The following instance with unit inflow ug = 1 exhibits an
outflow rate of 13/12 during a time interval.

Example 1. Consider the network consisting of the vertices {s, v, ¢} with edges
e1 = (s,t),ea = (s,v),e3 = (v,t),eq = (v,t) and inflow ug = u. Capacities are
vy = u/3, vo = 3u/4, v3 = u/3, and vy = u, and delays are 11 = 74 = 7, and
75 = 13 = 0. In this instance one can compute the derivative of the distance
labels at node t as

n=r

3 forfe|0,7/2)
7(0) = 3/2 for@e|r/2,7/2+7/5)
i0) = 12/13 for 0 € [7/2+7/5,271)
[

1 for 6 € [27,00)

Thus the amount of flow arriving at ¢ at time £;(0) can readily be computed as
u/¢,(0). If we consider the local time at node ¢ this flow is then

u/3 for @ € [0,37/2)
_ _ “n ) 2u/3 for 6 e [37/2,97/5)
JrO)+f57(0) + f1 (0) = 13u/12 for 6 € [97/5,37)
u  for 6 € [37,00).

By chaining together slightly modified copies of this instance, one can blow
up the maximum outflow to any desired quantity, even with unit inflow. Notice
that the length of the “pulse” in the above construction can be made as large as
required, by choosing 7 appropriately. This pulse can be used to drive a second
copy of the construction, with larger u. Figure 3 shows the construction with two
copies; there is a phase with outflow (13/12)2. The phases before the pulse of
the left gadget only produce a queue on €', which has no impact on the behavior
except for essentially shortening ¢’ and h’. We delay the details to the full version
of the paper.
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Fig. 3. Creating a larger pulse. Here, u’ = 13/12.

Even though the previous example shows that intermediate flows can grow
very large our main result states that a steady state is actually reached after finite
time. This indeed implies that the queues remain bounded along the evolution
of a dynamic equilibrium. However this also raises further questions. Indeed it
is unclear whether the steady state is attained after finitely many phases of the
Koch-Skutella algorithm. It is conceivable that in some situations the phases
become shorter and shorter and that infinitely many of them occur in the finite
time span before steady state is reached. The next example shows that there
may actually be an exponential (in the input size) number of phases.

Example 2. Here we sketch the construction of an instance with an exponential
number of phases; we defer the details to the full version of the paper. More pre-
cisely, for a given d we construct an instance with £2(2?) phases and O(d?) nodes.
The main idea is to construct a “2-pulse” gadget, based on the “l-pulse” gadget
described in Example 1. The outflow rate of this gadget has two, well-separated,
periods where the outflow is large; outside of these two periods, the outflow is
much smaller. Given a gadget with §2(27) phases (call it H), we construct one
with §2(29+1) phases roughly as follows. We begin with the 2-pulse gadget. To
the output of this gadget, we attach both a single edge of small capacity and
length O to the sink; and in parallel, we attach H. In between pulses, all flow
uses the short low-capacity edge, and any queues in H decay. During each of the
two pulses, flow enters H; inductively, this yields £2(2¢) phases each time.

Knowing that the dynamic equilibrium always reaches a steady state, a nat-
ural question is whether steady state queues can be characterized without having
to compute the full equilibrium evolution. While we already observe that this is
the case when the dual problem (D) has a unique solution, which occurs gener-
ically, the following example suggests that this is likely not possible in general.

Example 3. Consider the network of Example 1, setting 7 = 2 and v = 1, with
an extra node £, which becomes the new sink, and two additional arcs, a = (¢, 1)
and b = (t,1). Let v, = 2/3, v, = 1/3, 7, = 0, and 73, = 1. Clearly, up to time
3+ 3/5 all flow will simply take arc a and will not queue at ¢. Therefore we can
ignore this initial phase, and the queues that will form at equilibrium in arcs a
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and b are the same as those that we would have in a network consisting of just
nodes ¢ (the source) and ¢ (the sink) and inflow

0) = 13/12 for 6 € [0,2 +2/5)
Yoty = 1 forfe(2+2/5 00).

In this instance all flow will take arc a for time 6 € [0,8/5), forming a queue
z¢(8/5) = 2/3. At this point flow will start splitting between arcs ¢ and b in
proportions 2/3, 1/3, implying that queues will grow on both arcs until time
2+ 2/5 where the steady state is achieved. The steady state queues will thus be
2} =32/45 and z; = 1/45. This example shows that the steady state queues are
not minimal in any reasonable sense and that, furthermore, slightly changing the
instance (e.g. 74) will change the steady state queues. Furthermore, if we slightly
increase the capacity of arc b, say to 1/3 + ¢ the steady state queues jump to
zp=2/3 and z; = 0.

Additionally, one can observe from a slight variant of this instance, namely
taking 7 large and v, = 1/3+¢, that queues may grow very large in the transient
and then go down to zero at steady state.
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